Eigensolution Variability of Asymmetric Damped Systems

نویسندگان

  • Jian Chen
  • Yuegang Tan
چکیده

The characterization of energy dissipation or damping in rotor dynamic model is of fundamental importance. Noise and vibration are not only uncomfortable to the users, but also may lead to fatigue, fracture and even failure. During the design process of asymmetric damped systems, it is often required to make changes in the design variables such that the design is optimal. This paper is aimed at developing computationally efficient numerical methods for parametric sensitivity analysis. The algebraic method considered here computes the eigenvector sensitivity by assembling the derivatives of eigenproblems and the additional constraints into an algebraic equation. The coefficient matrix may be ill-conditioned since the elements of it are not all of the same order of magnitude. In this study, a new algebraic method is presented to compute the eigensolution variability of asymmetric damped systems. Some weight constants are introduced such that the proposed method is well-conditioned. The method is very compact and highly efficient, and the numerical stability is also demonstrated. Moreover, several special cases can be presented based on the similar idea of the proposed method. Finally, two numerical examples show the validity of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Engineering Interpretation of the Complex Eigensolution ofLinear Dynamic Systems

In traditional finite element based modal analysis of linear non-conservative structures, the modal shapes are determined solely based on stiffness and mass. Damping effects are included by implicitly assuming that the damping matrix can be diagonalized by the undamped modes. The approach gives real valued mode shapes and modal coordinates. While this framework is suitable for analysis of most ...

متن کامل

Vibration Analysis of Global Near-regular Mechanical Systems

Some near-regular mechanical systems involve global deviations from their corresponding regular system. Despite extensive research on vibration analysis (eigensolution) of regular and local near-regular mechanical systems, the literature on vibration analysis of global near-regular mechanical systems is scant. In this paper, a method for vibration analysis of such systems was developed using Kr...

متن کامل

Theory of vibrations in Stewart platforms

This article develops a simple linear model for the motion of a Stewart platform in a stationary position. That is, the situation where the platform is at rest and is then subject to an impulsive disturbance. The hydraulic actuators are modelled as simple spring-dashpot systems and the stiffness and damping matrices of the system are derived. It is found that the damping and stiffness matrices ...

متن کامل

A New Approach for Numerically Solving Nonlinear Eigensolution Problems

By considering a constraint on the energy profile, a new implicit approach is developed to solve nonlinear eigensolution problems. A corresponding minimax method is modified to numerically find eigensolutions in the order of their eigenvalues to a class of semilinear elliptic eigensolution problems from nonlinear optics and other nonlinear dispersive/diffusion systems. It turns out that the con...

متن کامل

Multi-parameter perturbation methods for the eigensolution sensitivity analysis of nearly-resonant non-defective multi-degree-of-freedom systems

The dynamic behavior of structural systems may be strongly characterized by the occurrence of multiple internal resonances for particular combinations of the mechanical parameters. The linear models governing these resonant or nearly-resonant systems tend to exhibit high sensitivity of the eigenvalues and eigenvectors to small parameter modifications. This pathological condition is recognized a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013